Sleep and circadian rhythm activity alterations during adolescence in a mouse model of neonatal fentanyl withdrawal syndrome

bioRxiv [Preprint]. 2024 Jul 9:2024.07.05.602239. doi: 10.1101/2024.07.05.602239.

Abstract

Purpose: Fentanyl, a highly potent synthetic opioid, is a major contributor to the ongoing opioid epidemic. During adulthood, fentanyl is known to induce pronounced sleep and circadian disturbances during use and withdrawal. Children exposed to opioids in utero are likely to develop neonatal opioid withdrawal syndrome, and display sleep disturbances after birth. However, it is currently unknown how neonatal opioid withdrawal from fentanyl impacts sleep and circadian rhythms in mice later in life.

Methods: To model neonatal opioid withdrawal syndrome, mice were treated with fentanyl from postnatal days 1 through 14, analogous to the third trimester of human gestation. After weaning, fentanyl and saline treated mice underwent non-invasive sleep and circadian rhythm monitoring during adolescence postnatal days 23 through 30.

Results: Neonatal fentanyl exposure led to reduced duration of wake and a decrease in the number of bouts of non-rapid eye movement sleep. Further, neonatally exposed mice displayed an increase in the average duration of rapid eye movement sleep bouts, reflecting an overall increase in the percent time spent in rapid eye movement sleep across days.

Conclusions: Neonatal fentanyl exposure leads to altered sleep-wake states during adolescence in mice.

Publication types

  • Preprint