Novel crystalline/amorphous heterophase Fe-Mn core-shell chains on-site generate hydrogen peroxide in aqueous solution

J Colloid Interface Sci. 2024 Dec 15:676:227-237. doi: 10.1016/j.jcis.2024.07.123. Epub 2024 Jul 18.

Abstract

Hydrogen peroxide (H2O2) is a crucial eco-friendly oxidizer with increasing demand due to its wide range of applications. Activating O2 with catalysts to generate H2O2 on-site offers a promising alternative to traditional production methods. Here, we design unique crystalline/amorphous heterophase Fe-Mn core-shell chains (ZVI-Mn) for efficient on-site generation of H2O2 and manipulation of subsequent H2O2 activation. The yield of H2O2 on-site produced by ZVI-Mn in water within 5 min was 103.7 mg·L-1, which was much greater than that of zero-valent iron (ZVI) and amorphous Mn (A-Mn) (0 and 42.5 mg·L-1). Raman and density functional theory (DFT) calculations confirmed that *OOH is the key species involved in the on-site generation of H2O2. Electrochemical tests confirmed the excellent electron-transferring ability, while electron paramagnetic resonance (EPR) revealed oxygen vacancy defects in the catalysts, which proved to be conducive to improving the catalytic activity of ZVI-Mn. Additionally, by regulating the pH of aqueous solution, ZVI-Mn can simultaneously achieve efficient on-site generation of H2O2 and in-situ removal of enrofloxacin from aqueous solution.

Keywords: Crystalline/amorphous heterophase; Fe-Mn core–shell chains; H(2)O(2); Manipulating decomposition of H(2)O(2); On-site oxygen activation.