Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.
Keywords: BRD9; FHD-286; FHD-60; OCA-T1; OCA-T2; POU2F3; SMARCD1; mSWI/SNF; neuroendocrine; small cell lung cancer.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.