Synthesis, Antimicrobial - Cytotoxic Evaluation, and Molecular Docking Studies of Quinolin-2-one Hydrazones Containing Nitrophenyl or Isonicotinoyl/Nicotinoyl Moiety

Chem Biodivers. 2024 Oct;21(10):e202401142. doi: 10.1002/cbdv.202401142. Epub 2024 Sep 6.

Abstract

By applying the hybrid molecular strategy, in this study, we reported the synthesis of fifteen quinolin-2-one hydrazones containing nitrophenyl or nicotinonyl/isonicotinoyl moiety, followed by in vitro and in silico evaluations of their potential antimicrobial and anticancer activities. In vitro antimicrobial evaluation of the target compounds on seven pathogenic strains, applying the broth microdilution method, revealed that compound 4a demonstrated the most potential antifungal activity against C. albicans (MIC 512 μg mL-1) and C. krusei (MIC 128 μg mL-1). In vitro cytotoxic evaluation of the target compounds on three human cancer cell lines, employing the MTT method, suggested that compound 5c exhibited the most potential cytotoxicities against HepG2 (IC50 10.19 μM), A549 (IC50 20.43 μM), and MDA-MB-231 (IC50 16.82 μM) cells. Additionally, molecular docking studies were performed to investigate the binding characteristics of compounds 4a and 5c with fungal lanosterol 14α-demethylase and human topoisomerase I-II, respectively, thereby contributing to the elucidation of their in vitro antifungal and cytotoxic properties. Furthermore, compounds 4a and 5c, via SwissADME prediction, could exhibit favorable physicochemical and pharmacokinetic properties. In conclusion, this study provides valuable insights into the potential of quinolin-2-one hydrazones as promising candidates for the development of novel antimicrobial and anticancer agents in the future.

Keywords: Antimicrobial; Cytotoxic; Hydrazone; Molecular docking; Quinolin-2-one.

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents / chemical synthesis
  • Anti-Infective Agents / chemistry
  • Anti-Infective Agents / pharmacology
  • Antifungal Agents* / chemical synthesis
  • Antifungal Agents* / chemistry
  • Antifungal Agents* / pharmacology
  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Candida albicans / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor*
  • Humans
  • Hydrazones* / chemical synthesis
  • Hydrazones* / chemistry
  • Hydrazones* / pharmacology
  • Microbial Sensitivity Tests*
  • Molecular Docking Simulation*
  • Molecular Structure
  • Quinolones / chemical synthesis
  • Quinolones / chemistry
  • Quinolones / pharmacology
  • Structure-Activity Relationship

Substances

  • Hydrazones
  • Antineoplastic Agents
  • Antifungal Agents
  • Anti-Bacterial Agents
  • Quinolones
  • Anti-Infective Agents