Treatment and Toxicity Considerations in Tuberculosis: A Narrative Review

Cureus. 2024 Jun 19;16(6):e62698. doi: 10.7759/cureus.62698. eCollection 2024 Jun.

Abstract

Tuberculosis remains one of the most significant bacterial infections plaguing the medical community worldwide. The bacteria Mycobacterium tuberculosis retains the ability to manifest as an active infection, latent infection, miliary infection, or reactivation of latent infections in times of immunosuppression. Therefore, the medication regimen to treat the condition revolves around four medications, each with a mechanism that targets a different part of the bacteria. Isoniazid weakens the cell wall but produces neuropathy and hepatotoxicity as side effects. Rifampin interrupts protein synthesis but creates the opportunity for many drug-to-drug interactions and red-orange discolorations as side effects. Pyrazinamide is poorly understood, but it is believed to acidify the internal environment of the bacteria, with gout exacerbations and arthralgias as major side effects. Ethambutol also works as a bacteriostatic medication to interrupt the cell membrane; however, its mechanism is poorly understood. The most concerning side effect is optic neuropathy. The unfavorable side effect profile for tuberculosis treatment may contribute to the higher rates of medication noncompliance with therapy and needs to be addressed in the future.

Keywords: ethambutol; isoniazid; mycobacterium tuberculosis; pyrazinamide; rifampin; side effects.

Publication types

  • Review