MicroRNA-26a deficiency attenuates the severity of frozen shoulder in a mouse immobilization model

J Orthop Res. 2024 Dec;42(12):2623-2633. doi: 10.1002/jor.25940. Epub 2024 Jul 22.

Abstract

The main pathogenesis of the frozen shoulder is thought to be the inflammation of the intra-articular synovium and subsequent fibrosis of the shoulder joint capsule. However, the molecular pathogenesis of the frozen shoulder is still unknown. A class of noncoding RNAs, microRNAs contribute to various diseases including musculoskeletal diseases. MicroRNA-26a (miR-26a) has been reported to be associated with fibrosis in several organs. This study aims to reveal the role of miR-26a on fibrosis in the shoulder capsule using a frozen shoulder model in miR-26a deficient (miR-26a KO) mice. MiR-26a KO and wild-type (WT) mice were investigated using a frozen shoulder model. The range of motion (ROM) of the shoulder, histopathological changes such as synovitis, and fibrosis-related gene expression in the model mice were evaluated to determine the role of miR-26a. In WT mice, both inflammatory cell infiltration and thickening of the inferior shoulder joint capsule were observed after 1 week of immobilization, and this thickening further progressed over the subsequent 6 weeks. However, the immobilized shoulder in miR-26a KO mice consistently exhibited significantly better ROM compared with WT mice at 1 and 6 weeks, and histological changes were significantly less severe. The expression of inflammation- and fibrosis-related genes was decreased in the miR-26a KO mice compared with WT mice at 1 and 6 weeks. Together, miR-26a deficiency attenuated the severity of frozen shoulder in the immobilization model mouse. The present study suggests that miR-26a has the potential to be a target miRNA for therapeutic approach to frozen shoulder.

Keywords: fibrosis; frozen shoulder; inflammation; knockout mice; microRNA‐26a.

MeSH terms

  • Animals
  • Bursitis* / pathology
  • Disease Models, Animal*
  • Fibrosis
  • Immobilization
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout*
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Range of Motion, Articular
  • Shoulder Joint / pathology

Substances

  • MicroRNAs
  • Mirn26 microRNA, mouse

Grants and funding