This study aims to determine the allele and genotype frequency, evaluate genotype-phenotype correlation and contribute to the spectrum of pathogenic variants in the PAH gene. Ninety-three individuals diagnosed with PKU were included in the study. Next-generation sequencing was utilized for detecting variants in the PAH gene. Copy Number Variations in patients without biallelic pathogenic variant were investigated by Multiplex Ligation-dependent Probe Amplification method. Genotype-phenotype correlations and genotype-based phenotype predictions were examined by comparing molecular test results with BIOPKUdb database. The clinical distributions of the patients were as follows: classic PKU 21% (n = 19), mild PKU 3% (n = 3), and mild hyperphenylalaninemia 76% (n = 71), respectively. Thirty-nine distinct variants and 70 distinct genotypes were found in patients. The most frequently observed variant was p.(Ala300Ser) (13.9%) and the most frequently observed genotype was p.[Ala300Ser];[Ala300Ser] (5.6%). Compound heterozygous genotypes (%69) were more prevalent than homozygous genotypes. A novel variant, c.441+4A>C, was observed. Predicted metabolic phenotypes in the database showed consistency with patient phenotypes (n = 33/41). BH4 responsiveness showed partial consistency with database predictions (n = 13/25). Establishing genotype-phenotype correlations can facilitate personalized management approaches. Overall, this study contributes to understanding the genetic basis and clinical course of PKU.
Keywords: PAH gene; Genotype–phenotype correlation; Novel variant; Phenylketonuria.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.