Background and purpose: Volume regression during radiotherapy can indicate patient-specific treatment response. We aimed to identify pre-treatment multimodality imaging (MMI) metrics from positron emission tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT) that predict rapid tumor regression during radiotherapy in human papilloma virus (HPV) associated oropharyngeal carcinoma.
Materials and methods: Pre-treatment FDG PET-CT, diffusion-weighted MRI (DW-MRI), and intra-treatment (at 1, 2, and 3 weeks) MRI were acquired in 72 patients undergoing chemoradiation therapy for HPV+ oropharyngeal carcinoma. Nodal gross tumor volumes were delineated on longitudinal images to measure intra-treatment volume changes. Pre-treatment PET standardized uptake value (SUV), CT Hounsfield Unit (HU), and non-gaussian intravoxel incoherent motion DW-MRI metrics were computed and correlated with volume changes. Intercorrelations between MMI metrics were also assessed using network analysis. Validation was carried out on a separate cohort (N = 64) for FDG PET-CT.
Results: Significant correlations with volume loss were observed for baseline FDG SUVmean (Spearman ρ = 0.46, p < 0.001), CT HUmean (ρ = 0.38, p = 0.001), and DW-MRI diffusion coefficient, Dmean (ρ = -0.39, p < 0.001). Network analysis revealed 41 intercorrelations between MMI and volume loss metrics, but SUVmean remained a statistically significant predictor of volume loss in multivariate linear regression (p = 0.01). Significant correlations were also observed for SUVmean in the validation cohort in both primary (ρ = 0.30, p = 0.02) and nodal (ρ = 0.31, p = 0.02) tumors.
Conclusions: Multiple pre-treatment imaging metrics were correlated with rapid nodal gross tumor volume loss during radiotherapy. FDG-PET SUV in particular exhibited significant correlations with volume regression across the two cohorts and in multivariate analysis.
Keywords: Diffusion weighted MRI; FDG PET; HPV+; Head and neck cancer; Multimodality imaging; Quantitative imaging; Treatment response monitoring.
© 2024 The Authors. Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology.