Assessing and predicting water quality index with key water parameters by machine learning models in coastal cities, China

Heliyon. 2024 Jun 27;10(13):e33695. doi: 10.1016/j.heliyon.2024.e33695. eCollection 2024 Jul 15.

Abstract

The water quality index (WQI) is a widely used tool for comprehensive assessment of river environments. However, its calculation involves numerous water quality parameters, making sample collection and laboratory analysis time-consuming and costly. This study aimed to identify key water parameters and the most reliable prediction models that could provide maximum accuracy using minimal indicators. Water quality from 2020 to 2023 were collected including nine biophysical and chemical indicators in seventeen rivers in Yancheng and Nantong, two coastal cities in Jiangsu Province, China, adjacent to the Yellow Sea. Linear regression and seven machine learning models (Artificial Neural Network (ANN), Self-Organizing Maps (SOM), K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF), Extreme Gradient Boosting (XGB) and Stochastic Gradient Boosting (SGB)) were developed to predict WQI using different groups of input variables based on correlation analysis. The results indicated that water quality improved from 2020 to 2022 but deteriorated in 2023, with inland stations exhibiting better conditions than coastal ones, particularly in terms of turbidity and nutrients. The water environment was comparatively better in Nantong than in Yancheng, with mean WQI values of approximately 55.3-72.0 and 56.4-67.3, respectively. The classifications "Good" and "Medium" accounted for 80 % of the records, with no instances of "Excellent" and 2 % classified as "Bad". The performance of all prediction models, except for SOM, improved with the addition of input variables, achieving R2 values higher than 0.99 in models such as SVM, RF, XGB, and SGB. The most reliable models were RF and XGB with key parameters of total phosphorus (TP), ammonia nitrogen (AN), and dissolved oxygen (DO) (R2 = 0.98 and 0.91 for training and testing phase) for predicting WQI values, and RF using TP and AN (accuracy higher than 85 %) for WQI grades. The prediction accuracy for "Medium" and "Low" water quality grades was highest at 90 %, followed by the "Good" level at 70 %. The model results could contribute to efficient water quality evaluation by identifying key water parameters and facilitating effective water quality management in river basins.

Keywords: Coastal cities; Key water parameters; Machine learning models; Water quality; Water quality index (WQI).