In Silico, In Vitro and Ex Vivo Evaluation of the Antihyperglycaemic, Antioxidant and Cytotoxic Properties of Coccinia grandis L. Leaf Extract

Food Technol Biotechnol. 2024 Jun;62(2):188-204. doi: 10.17113/ftb.62.02.24.8162.

Abstract

Research background: Coccinia grandis L. is traditionally used for the treatment of diabetes mellitus. Since the scientific evidence and mechanism of action have not yet been extensively investigated, this study aims to evaluate the antidiabetic and cytotoxic effects together with the optimisation and development of a scale-up process design for higher yields of bioactive phytocompounds from C. grandis.

Experimental approach: The in silico study was conducted to predict the binding affinity of phytocompounds of C. grandis for α-amylase and α-glucosidase enzymes involved in the pathophysiology of diabetes with pharmacokinetic assessment. Response surface methodology was used to determine the optimum total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC) and antioxidant activities (DPPH and FRAP) in 17 different experimental runs in which the parameters of microwave-assisted extraction such as temperature (50-70 °C), power (400-1000 W) and time (15-45 min) were varied. The phytocompounds were purified and identified using column chromatography, thin-layer chromatography (TLC), UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-mass spectrometry (LC-MS). The in vitro antidiabetic activity was determined by α-amylase and α-glucosidase enzymatic inhibitory assays, while cytotoxic investigations were done by measuring haemolytic activity, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and chorioallantoic membrane (CAM) assays.

Results and conclusions: The reported major bioactive compounds have shown an excellent binding affinity for α-amylase and α-glucosidase enzymes in the range of -14.28 to -36.12 kJ/mol with good pharmacokinetic properties and toxicities ranging from low to medium. The bioactive constituents such as total phenols, total flavonoids, total tannins and antioxidant activities such as DPPH and FRAP were found to be high and dependent on the optimised microwave-assisted extraction parameters such as temperature, time and power: 55 °C, 45 min and 763 W, respectively. Sixteen compounds were identified by FTIR and LC-MS spectra in the plant sample after preliminary identification, purification and TLC. The percentage of enzyme inhibition depended on the concentration of the extract (7.8-125.0 µg/mL) and was higher than that of acarbose. The haemolytic activity was in accordance with ISO standards and low toxicity was observed in the MTT and CAM assays in the range of 7.8-125.0 µg/mL, suggesting its potential use as an antidiabetic drug and for functional food development.

Novelty and scientific contribution: The results of the study open up new opportunities for researchers, scientists and entrepreneurs in the food and pharmaceutical sectors to develop antidiabetic foods and medicines that help diabetics to better control their condition and maintain overall health.

Keywords: Coccinia grandis; cytotoxicity; diabetes mellitus; enzyme inhibition; extraction optimisation; molecular docking; phytochemicals.