Ultra-high contrast (UHC) MRI describes forms of MRI in which little or no contrast is seen on conventional MRI images but very high contrast is seen with UHC techniques. One of these techniques uses the divided subtracted inversion recovery (dSIR) sequence, which, in modelling studies, can produce ten times the contrast of conventional inversion recovery (IR) sequences. When used in cases of mild traumatic brain injury (mTBI), the dSIR sequence frequently shows extensive abnormalities in white matter that appears normal when imaged with conventional T2-fluid-attenuated IR (T2-FLAIR) sequences. The changes are bilateral and symmetrical in white matter of the cerebral and cerebellar hemispheres. They partially spare the anterior and posterior central corpus callosum and peripheral white matter of the cerebral hemispheres and are described as the whiteout sign. In addition to mTBI, the whiteout sign has also been seen in methamphetamine use disorder and Grinker's myelinopathy (delayed post-hypoxic leukoencephalopathy) in the absence of abnormalities on T2-FLAIR images, and is a central component of post-insult leukoencephalopathy syndromes. This paper describes the concept of ultra-high contrast MRI, the whiteout sign, the theory underlying the use of dSIR sequences and post-insult leukoencephalopathy syndromes.
Keywords: T1-BLAIR; T1-bipolar filter; divided subtracted inversion recovery; magnetic resonance imaging; mild traumatic brain injury; post-insult leukoencephalopathy syndromes; ultra-high contrast; white matter disease of the brain; whiteout sign.