Modulating the function of immune cells by targeting the cells themselves has become a key strategy in immunotherapy for combating various diseases such as cancer, autoimmune disorders, and infectious ailments. The use of mRNA (mRNA) is a powerful tool for transiently inducing protein expression, which is often used for genetic manipulation. However, its inherent instability and inability to precisely reach target cells necessitate the use of biomaterials for safe and effective delivery. Additionally, transfecting immune cells is difficult and complex due to their resistance mechanisms, signaling pathways, and cellular interactions. This review focuses on the recent development of biomaterials for mRNA delivery to immune cells, including lipid nanoparticles and polymeric carriers. It also outlines the challenges of targeting and delivering therapeutic payloads to immune cells, providing commentary and outlook on the design of next-generation materials. Finally, this approach has the potential to significantly enhance the precision and effectiveness of therapeutic interventions for various diseases, shaping the future of mRNA delivery for immune conditions.
Keywords: biomaterials; immune system; immunotherapy; mRNA; mRNA delivery; vaccines.