Identifying the time of ovulation is an important process for women seeking and avoiding pregnancy. Luteinizing hormone (LH) plays an important role in ovulation, which is very important in the reproductive mechanism. Therefore, detecting the LH level is of great importance in monitoring ovulation. In this study, sensitive, rapid and selective electrochemical biosensors were developed to detect LH quantitatively from human urine samples and to monitor the ovulation period. Isopotential region and current density optimization studies revealed that sensors with an electrode width and spacing of 1 mm had the optimum performance. Electrochemical impedance spectra evidenced immobilization of DSP self-assembled monolayers and anti-LH-beta antibody on the surface. While the mobile phone vibrator led to a 3.5-fold enhancement in response signals, the agitation system developed resulted in a 10-fold improvement. The sensors displayed detection limits of 1.02 and 1.53 mIU/ml in the range of 0-40 mIU/ml LH concentration obtained using two statistical approaches. Additionally, the sensors showed no cross-reactivity to hCG, which is very similar in structure and is widely reported to have high cross-reactivity.
Keywords: Agitation; LH detection; Mass transportation; Microfluidics; Ovulation test; Point of care biosensor.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.