Colored wheats have drawn attention due to their nutritional compounds. However, limited information is obtained on the effects of nitrogen fertilizer on crucial metabolites and grain quality of wheats with different color grain. In the study, the pot experiment was conducted with white (W), blue (B), and purple (P) grain wheats treated with three levels of N (LN, 0 g kg-1; MN, 0.05 g kg-1; HN, 0.1 g kg-1). Higher N level could promote wheat growth, improve grain indexes, and nutrient uptake. SPAD values of flag leaves remained in the order HN > MN > LN across all wheat varieties, and maintained increasing during tested stages under purple wheat. Metabolomics analysis showed that the annotated 358 metabolites mainly belonged to 29 classes, including carboxylic acids and their derivatives, fatty acids, flavonoids, and phenols. 35, 39, and 70 differential accumulated metabolites were respectively found between the WLN vs. WHN, the BHN vs. BLN, and the PHN vs. PLN, which were mainly enriched in "biosynthesis of plant secondary metabolites", "cGMP-PKG signaling pathway", "sphingolipid signaling pathway", "biosynthesis of alkaloids derived from histidine and purine", and "biosynthesis of plant hormones". Additionally, erucic acid was dominated in the three wheat cultivars, and was decreased after treated with high N levels. Our study preliminarily revealed the different response mechanisms to different N levels in the white, blue, and purple grain wheats, and lay a theoretical foundation for further breeding of excellent colored grain varieties.
Keywords: Colored grain wheat; Differentially accumulated metabolites; Nitrogen level; Non-targeted metabolomics.
Copyright © 2024 Elsevier Ltd. All rights reserved.