The difficulty of obtaining samples from certain human tissues has led to efforts to find accessible sources to analyze molecular markers derived from DNA. In this study, we look for DNA methylation patterns in blood samples and its association with the brain methylation pattern in neurodegenerative disorders. Using data from methylation databases, we selected 18,293 CpGs presenting correlated methylation levels between blood and brain (bb-CpGs) and compare their methylation level between blood samples from patients with neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, and X Fragile Syndrome) and healthy controls. Sixty-four bb-CpGs presented significant distinct methylation levels in patients, being: nine for Alzheimer's disease, nine for Parkinson's disease, 28 for Multiple Sclerosis, and 18 for Fragile X Syndrome. Similar differences in methylation pattern for the nine Alzheimer's bb-CpGs was also observed when comparing brain tissue from patients vs. controls. The genomic regions of some of these 64 bb-CpGs are placed close to or inside genes previously associated with the respective condition. Our findings support the rationale of using blood DNA as a surrogate of brain tissue to analyze changes in CpG methylation level in patients with neurodegenerative diseases, opening the possibility for characterizing new biomarkers.
© 2024. The Author(s).