Homeostatic Synaptic Plasticity of Miniature Excitatory Postsynaptic Currents in Mouse Cortical Cultures Requires Neuronal Rab3A

bioRxiv [Preprint]. 2024 Dec 4:2023.06.14.544980. doi: 10.1101/2023.06.14.544980.

Abstract

Following prolonged activity blockade, amplitudes of miniature excitatory postsynaptic currents (mEPSCs) increase, a form of plasticity termed "homeostatic synaptic plasticity." We previously showed that a presynaptic protein, the small GTPase Rab3A, is required for full expression of the increase in miniature endplate current amplitudes following prolonged blockade of action potential activity at the mouse neuromuscular junction in vivo (Wang et al., 2011), but it is unknown whether this form of Rab3A-dependent homeostatic plasticity shares any characteristics with central synapses. We show here that homeostatic synaptic plasticity of mEPSCs is impaired in mouse cortical neuron cultures prepared from Rab3A-/- and mutant mice expressing a single point mutation of Rab3A, Rab3A Earlybird mice. To determine if Rab3A is involved in the well-established homeostatic increase in postsynaptic AMPA-type receptors (AMPARs), we performed a series of experiments in which electrophysiological recordings of mEPSCs and confocal imaging of synaptic AMPAR immunofluorescence were assessed within the same cultures. We found that the increase in postsynaptic AMPAR levels was more variable than that of mEPSC amplitudes, suggesting other factors may contribute to the homeostatic increase in synaptic strength. Finally, we demonstrate that Rab3A is acting in neurons because only selective loss of Rab3A in neurons, not glia, disrupted the homeostatic increase in mEPSC amplitudes. This is the first demonstration that a protein thought to function presynaptically is required for homeostatic synaptic plasticity of quantal size.

Keywords: AMPA receptors; Homeostatic Synaptic Plasticity; Rab3A; Synaptic Scaling; mEPSCs.

Publication types

  • Preprint