Impact of chromosomally encoded resistance mechanisms and transferable β-lactamases on the activity of cefiderocol and innovative β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa

J Antimicrob Chemother. 2024 Oct 1;79(10):2591-2597. doi: 10.1093/jac/dkae263.

Abstract

Objectives: We aimed to compare the stability of the newly developed β-lactams (cefiderocol) and β-lactam/β-lactamase inhibitor combinations (ceftazidime/avibactam, ceftolozane/tazobactam, aztreonam/avibactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/nacubactam and meropenem/xeruborbactam) against the most clinically relevant mechanisms of mutational and transferable β-lactam resistance in Pseudomonas aeruginosa.

Methods: We screened a collection of 61 P. aeruginosa PAO1 derivatives. Eighteen isolates displayed the most relevant mechanisms of mutational resistance to β-lactams. The other 43 constructs expressed transferable β-lactamases from genes cloned in pUCP-24. MICs were determined by reference broth microdilution.

Results: Cefiderocol and imipenem/relebactam exhibited excellent in vitro activity against all of the mutational resistance mechanisms studied. Aztreonam/avibactam, cefepime/taniborbactam, cefepime/zidebactam, meropenem/vaborbactam, meropenem/nacubactam and meropenem/xeruborbactam proved to be more vulnerable to mutational events, especially to overexpression of efflux operons. The agents exhibiting the widest spectrum of activity against transferable β-lactamases were aztreonam/avibactam and cefepime/zidebactam, followed by cefepime/taniborbactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam. However, some MBLs, particularly NDM enzymes, may affect their activity. Combined production of certain enzymes (e.g. NDM-1) with increased MexAB-OprM-mediated efflux and OprD deficiency results in resistance to almost all agents tested, including last options such as aztreonam/avibactam and cefiderocol.

Conclusions: Cefiderocol and new β-lactam/β-lactamase inhibitor combinations show promising and complementary in vitro activity against mutational and transferable P. aeruginosa β-lactam resistance. However, the combined effects of efflux pumps, OprD deficiency and efficient β-lactamases could still result in the loss of all therapeutic options. Resistance surveillance, judicious use of new agents and continued drug development efforts are encouraged.

MeSH terms

  • Anti-Bacterial Agents* / pharmacology
  • Azabicyclo Compounds* / pharmacology
  • Cefiderocol*
  • Ceftazidime / pharmacology
  • Cephalosporins* / pharmacology
  • Chromosomes, Bacterial / genetics
  • Cyclooctanes / pharmacology
  • Drug Combinations*
  • Gene Transfer, Horizontal
  • Humans
  • Microbial Sensitivity Tests*
  • Pseudomonas Infections / drug therapy
  • Pseudomonas Infections / microbiology
  • Pseudomonas aeruginosa* / drug effects
  • Pseudomonas aeruginosa* / enzymology
  • Pseudomonas aeruginosa* / genetics
  • Tazobactam / pharmacology
  • beta-Lactam Resistance / genetics
  • beta-Lactamase Inhibitors* / pharmacology
  • beta-Lactamases* / genetics
  • beta-Lactamases* / metabolism
  • beta-Lactams / pharmacology

Substances

  • Cephalosporins
  • beta-Lactamase Inhibitors
  • beta-Lactamases
  • Anti-Bacterial Agents
  • Azabicyclo Compounds
  • Drug Combinations
  • Cefiderocol
  • Cyclooctanes
  • Tazobactam
  • beta-Lactams
  • Ceftazidime
  • avibactam, ceftazidime drug combination
  • ceftolozane, tazobactam drug combination
  • relebactam