Objectives: We aimed to compare the stability of the newly developed β-lactams (cefiderocol) and β-lactam/β-lactamase inhibitor combinations (ceftazidime/avibactam, ceftolozane/tazobactam, aztreonam/avibactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/nacubactam and meropenem/xeruborbactam) against the most clinically relevant mechanisms of mutational and transferable β-lactam resistance in Pseudomonas aeruginosa.
Methods: We screened a collection of 61 P. aeruginosa PAO1 derivatives. Eighteen isolates displayed the most relevant mechanisms of mutational resistance to β-lactams. The other 43 constructs expressed transferable β-lactamases from genes cloned in pUCP-24. MICs were determined by reference broth microdilution.
Results: Cefiderocol and imipenem/relebactam exhibited excellent in vitro activity against all of the mutational resistance mechanisms studied. Aztreonam/avibactam, cefepime/taniborbactam, cefepime/zidebactam, meropenem/vaborbactam, meropenem/nacubactam and meropenem/xeruborbactam proved to be more vulnerable to mutational events, especially to overexpression of efflux operons. The agents exhibiting the widest spectrum of activity against transferable β-lactamases were aztreonam/avibactam and cefepime/zidebactam, followed by cefepime/taniborbactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam. However, some MBLs, particularly NDM enzymes, may affect their activity. Combined production of certain enzymes (e.g. NDM-1) with increased MexAB-OprM-mediated efflux and OprD deficiency results in resistance to almost all agents tested, including last options such as aztreonam/avibactam and cefiderocol.
Conclusions: Cefiderocol and new β-lactam/β-lactamase inhibitor combinations show promising and complementary in vitro activity against mutational and transferable P. aeruginosa β-lactam resistance. However, the combined effects of efflux pumps, OprD deficiency and efficient β-lactamases could still result in the loss of all therapeutic options. Resistance surveillance, judicious use of new agents and continued drug development efforts are encouraged.
© The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.