Preparation of Pt and bamboo charcoal co-modified TiO2 for formaldehyde sensing at room temperature

R Soc Open Sci. 2024 Jul 3;11(7):231216. doi: 10.1098/rsos.231216. eCollection 2024 Jul.

Abstract

Anatase TiO2 has evolved into one of the most attractive materials for gas sensing owing to its strong oxidation activity and excellent sensing properties. In this study, we prepared Pt and bamboo charcoal co-modified nano-TiO2 using a one-pot hydrothermal process and applied it to detect formaldehyde. The successful incorporation of the precious metal Pt and bamboo charcoal onto TiO2 was confirmed by scanning electron microscope, transmission electron microscopy, energy dispersive spectrometer, X-ray diffraction and X-ray photoelectron spectroscopy. Detailed analysis revealed a homogeneous distribution of Pt nanoparticles and bamboo charcoal on the TiO2 surface, which significantly improved the surface area and facilitated gas adsorption. These modifiers significantly enhanced the response of TiO2 to formaldehyde, for instance, the response signal increased fourfold, while the response time decreased from 91 to 68 s. The sample with 0.5@Pt and 0.5@C bamboo charcoal performed the best, showcasing the synergistic effect of metal nanoparticles and carbonaceous materials on gas-sensing properties. Our work highlighted the potential of using biomass-derived carbon to enhance the detection of formaldehyde and demonstrated the importance of material characteristics in designing effective gas sensors.

Keywords: bamboo charcoal; formaldehyde sensing; gas sensors; nanostructured TiO2; platinum-modified TiO2.