Analysis of bonding motifs in unusual molecules I: planar hexacoordinated carbon atoms

Phys Chem Chem Phys. 2024 Aug 14;26(32):21395-21406. doi: 10.1039/d4cp01800a.

Abstract

The bonding structures of CO3Li3+ and CS3Li3+ are studied by means of oriented quasi-atomic orbitals (QUAOs) to assess the possibility of these molecules being planar hexacoordinated carbon (phC) systems. CH3Li and CO32- are employed as reference molecules. It is found that the introduction of Li+ ions into the molecular environment of carbonate has a greater effect on the orbital structure of the O atoms than it does on the C atom. Partial charges computed from QUAO populations imply repulsion between the positively charged C and Li atoms in CO3Li3+. Upon the transition from CO3Li3+ to CS3Li3+, the analysis reveals that the substitution of O atoms by S atoms inverts the polarity of the carbon-chalcogen σ bond. This is linked to the difference in s- and p-fractions of the QUAOs of C and S, as element electronegativities do not explain the observed polarity of the CSσ bond. Partial charges indicate that the larger electron population on the C atom in CS3Li3+ makes C-Li attraction possible. Upon comparison with the C-Li bond in methyllithium, it is found that the C-Li covalent interactions in CO3Li3+ and CS3Li3+ have about 14% and 6% of the strength of the C-Li covalent interaction in CH3Li, respectively. Consequently, it is concluded that only CS3Li3+ may be considered to be a phC system.