We explored the feasibility of high-speed and high-accuracy quantification of active pharmaceutical ingredient (API) content in tablet products by near-infrared (NIR) spectroscopy to improve the reliability of pharmaceuticals. For this purpose, we employed a high-power NIR time-stretch transmission spectrometer recently developed by us. By using this transmission spectrometer with a multivariate calibration model, we demonstrated the ability to quantify API content with a short measurement time of 3.9 ms per tablet for model pharmaceuticals. For the model tablet, the quantification ability of our spectrometer was comparable to that achieved by a commonly used Fourier-transform NIR (FT-NIR) spectrometer with a measurement time of several seconds. We also confirmed that the effect of irradiating tablets with the NIR pulses used in our spectrometer was negligible.
Keywords: API content; High-speed measurement; Near-infrared spectroscopy; Pharmaceutical tablets; Time-stretch spectroscopy; Transmission spectroscopy.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.