Quantifying the impact of damming on phosphorus reallocation: Finer particles offset the reduction in soluble reactive phosphorus (SRP) by decreasing suspended sediment concentration

Sci Total Environ. 2024 Nov 1:949:175098. doi: 10.1016/j.scitotenv.2024.175098. Epub 2024 Jul 29.

Abstract

In this research, an innovative approach to quantify the impact of damming on phosphorus (P) reallocation between suspended sediments (SS) and water was proposed. P allocation can be described by the surface complexation model, with the impact of damming quantified by four variables: P load, suspended sediment concentration (SSC), particle size, and pH. Iron/aluminium (Fe/Al) oxide-adsorbed P (Fe/Alo-P) was identified as the exchangeable P during adsorption/desorption equilibrium with a series of heterogeneous sediment samples from two large Asian rivers, the Mekong River and the Yellow River. In both rivers, the Fe/Alo-P concentration increased from the tail towards the dam of the reservoirs, primarily attributed to the decrease in particle size from the tail towards the dam of the reservoirs. The Fe/Alo-P concentration in the Lancang River was higher than that in the Yellow River, ranging from 14.5 to 119.9 mg kg-1 and from 14.5 to 22.1 mg kg-1, respectively. The soluble reactive P (SRP) concentration decreased with decreasing SSC, while finer suspended sediment particles containing more Fe/Alo-P greatly offset the reduction in SRP concentration. When the maximum Fe/Alo-P concentration in the finest particles of SS was assumed to be 100 mg kg-1, the P equilibrium concentration (ce) decreased from 0.028 mg L-1 to 0.008 mg L-1 when the SSC decreased from 64 g L-1 to 1 g L-1 for SS with a median grain size (D50) of 32 μm and an Fe/Alo-P concentration of 11 mg kg-1. However, ce increased from 0.008 mg L-1 to 0.021 mg L-1 when the D50 of SS decreased from 32 μm to 4 μm with an SSC of 1 g L-1 and an Fe/Alo-P concentration of 76 mg kg-1 for 4-μm SS. The SRP concentration is sensitive to the Fe/Alo-P concentration in SS, and the P allocation ratio between sediments and water is comparable.

Keywords: Damming; Fe/Al oxide-adsorbed phosphorus; Fine particles; Phosphorus retention; Soluble reactive phosphorus; Suspended sediments.