The neural crest (NC), also known as the "fourth germ layer", is an embryonic structure with important contributions to multiple tissue and organ systems. Neural crest cells (NCCs) are subjected to epithelial to mesenchymal transition and migrate throughout the embryo until they reach their destinations, where they differentiate into discrete cell types. Specific gene expression enables this precise NCCs delamination and colonization potency in distinct and diverse locations therein. This review aims to summarize the current experimental evidence from multiple species into the NCCs specifier genes that drive this embryo body axes segmentation. Additionally, it attempts to filter further into the genetic background that produces these individual cell subpopulations. Understanding the multifaceted genetic makeup that shapes NC-related embryonic structures will offer valuable insights to researchers studying organogenesis and disease phenotypes arising from dysmorphogenesis.
Keywords: animal models; congenital anomalies; epithelial-mesenchymal transition; genes; model organisms; neural crest cells.
© 2024 The Author(s). Published by IMR Press.