Systematic review and meta-analysis on the effects of chronic peri-adolescent cannabinoid exposure on schizophrenia-like behaviour in rodents

Mol Psychiatry. 2025 Jan;30(1):285-295. doi: 10.1038/s41380-024-02668-5. Epub 2024 Aug 2.

Abstract

Background: The link between cannabis use and schizophrenia is well-established in epidemiological studies, especially among adolescents with early-onset use. However, this association in rodent models is less clear. This meta-analysis examined the effects of adolescent cannabinoid exposure on distinct schizophrenia-like behaviours in rodents and how experimental variations influence outcomes.

Methods: Following a pre-registered protocol (CRD42022338761), we searched PubMed, Ovid Medline, Embse and APA PsychInfo for English-language original studies until May 2024. We synthesised data from experiments on schizophrenia-like behaviour in rats and mice after repeated peri-pubertal (onset between P23-P45) cannabinoid exposure. Risk of bias was assessed using the SYRCLE's tool.

Results: We included 359 experiments from 108 articles across 9 behavioural tests. We found meta-analytic evidence supporting that CB1R agonists, both natural and synthetic, elicited broad schizophrenia-like behavioural alterations, including impaired working memory [g = -0.56; (CI: -0.93, -0.18)], novel object recognition [g = -0.66; (CI: -0.97, -0.35)], novel object location recognition [g = -0.70; (CI: -1.07, -0.33]), social novelty preference [g = -0.52; (CI: -0.93, -0.11)], social motivation [g = -0.21; (CI: -0.42, -0.00)], pre-pulse inhibition [g = -0.43; (CI: -0.76, -0.10)], and sucrose preference [g = -0.87; (CI: -1.46, -0.27)]. By contrast, effects on novelty-induced locomotion were negligible. Subgroup analyses revealed similar effects across sexes and species. Substantial variance in the protocols and moderate-to-high heterogeneity in behavioural outcomes were observed. We found CBD may enhance fear memory recall, but data was limited.

Discussion: This is the first meta-analysis to comprehensively assess the link between cannabinoids and schizophrenia-like behaviours in rodents. Our results support epidemiological links between early cannabis use and schizophrenia-like phenotypes, confirming the utility of animal models. Standardising protocols will optimise models to strengthen reproducibility and comparisons, our work provides a framework for refining rodent models to elucidate biological pathways linking cannabis and schizophrenia.

Publication types

  • Meta-Analysis
  • Systematic Review

MeSH terms

  • Adolescent
  • Animals
  • Behavior, Animal / drug effects
  • Cannabinoids* / pharmacology
  • Disease Models, Animal*
  • Humans
  • Male
  • Memory, Short-Term / drug effects
  • Mice
  • Rats
  • Rodentia
  • Schizophrenia*

Substances

  • Cannabinoids