Liver oncogenesis is accompanied by discernible protein changes in the bloodstream. By employing plasma proteomic profiling, we can delve into the molecular mechanisms of liver cancer and pinpoint potential biomarkers. In this nested case-control study, we applied liquid chromatography-tandem mass spectrometry for proteome profiling in baseline plasma samples. Differential protein expression was determined and was subjected to functional enrichment, network, and Mendelian randomization (MR) analyses. We identified 193 proteins with notable differential levels between the groups. Of these proteins, MR analysis offered a compelling negative association between apolipoprotein B (APOB) and liver cancer. This association was further corroborated in the UK Biobank cohort: genetically predicted APOB levels were associated with a 31% (95% CI 19-42%) decreased risk of liver cancer; and phenotypic analysis indicated an 11% (95% CI 8-14%) decreased liver cancer risk for every 0.1 g/L increase of circulating APOB levels. Multivariable MR analysis suggested that the hepatic fat content might fully mediate the APOB-liver cancer connection. In summary, we identified some plasma proteins, particularly APOB, as potential biomarkers of liver cancer. Our findings underscore the intricate link between lipid metabolism and liver cancer, offering hints for targeted prophylactic strategies and early detection.
Keywords: APOB; causal proteins; lipid metabolism; liver cancer; plasma proteome.