Dopaminergic amacrine cells express HCN channels in the developing and adult mouse retina

bioRxiv [Preprint]. 2024 Jul 23:2024.07.20.604440. doi: 10.1101/2024.07.20.604440.

Abstract

Purpose: To determine the molecular and functional expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in developing and mature dopaminergic amacrine cells (DACs), the sole source of ocular dopamine that plays a vital role in visual function and eye development.

Methods: HCN channels are encoded by isoforms 1-4. HCN1, HCN2, and HCN4 were immunostained in retinal slices obtained from mice at postnatal day 4 (P4), P8, and P12 as well as in adults. Each HCN channel isoform was also immunostained with tyrosine hydroxylase, a marker for DACs, at P12 and adult retinas. Genetically-marked DACs were recorded in flat-mount retina preparation using a whole-cell current-clamp technique.

Results: HCN1 was expressed in rods/cones, amacrine cells, and retinal ganglion cells (RGCs) at P4, along with bipolar cells by P12. Different from HCN1, HCN2 and HCN4 were each expressed in amacrine cells and RGCs at P4, along with bipolar cells by P8, and in rods/cones by P12. Double immunostaining shows that each of the three isoforms was expressed in approximately half of DACs at P12 but in almost all DACs in adults. Electrophysiology results demonstrate that HCN channel isoforms form functional HCN channels, and the pharmacological blockade of HCN channels reduced the spontaneous firing frequency in most DACs.

Conclusions: Each class of retinal neurons may use different isoforms of HCN channels to function during development. HCN1, HCN2, and HCN4 form functional HCN channels in DACs, which appears to modulate their spontaneous firing activity.

Publication types

  • Preprint