NG2 is a target gene of MLL-AF4 and underlies glucocorticoid resistance in MLLr B-ALL by regulating NR3C1 expression

Blood. 2024 Nov 7;144(19):2002-2017. doi: 10.1182/blood.2023022050.

Abstract

B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ∼85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis in MLLr B-ALL. Despite its contribution to MLLr B-ALL pathogenesis, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here, we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-ALF transcription elongation factor 4 (AF4) fusion protein. NG2 negatively regulates the expression of the GC receptor nuclear receptor subfamily 3 group C member 1 (NR3C1) and confers GC resistance to MLLr B-ALL cells. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via activating protein-1 (AP-1)-mediated transrepression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.

MeSH terms

  • Animals
  • Antigens
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm* / genetics
  • Gene Expression Regulation, Leukemic
  • Glucocorticoids* / pharmacology
  • Histone-Lysine N-Methyltransferase / genetics
  • Histone-Lysine N-Methyltransferase / metabolism
  • Humans
  • Mice
  • Myeloid-Lymphoid Leukemia Protein* / genetics
  • Myeloid-Lymphoid Leukemia Protein* / metabolism
  • Oncogene Proteins, Fusion* / genetics
  • Oncogene Proteins, Fusion* / metabolism
  • Precursor B-Cell Lymphoblastic Leukemia-Lymphoma* / genetics
  • Precursor B-Cell Lymphoblastic Leukemia-Lymphoma* / metabolism
  • Precursor B-Cell Lymphoblastic Leukemia-Lymphoma* / pathology
  • Proteoglycans
  • Receptors, Glucocorticoid* / genetics
  • Receptors, Glucocorticoid* / metabolism

Substances

  • Receptors, Glucocorticoid
  • Myeloid-Lymphoid Leukemia Protein
  • NR3C1 protein, human
  • Glucocorticoids
  • Oncogene Proteins, Fusion
  • MLL-AF4 fusion protein, human
  • chondroitin sulfate proteoglycan 4
  • KMT2A protein, human
  • Histone-Lysine N-Methyltransferase
  • Antigens
  • Proteoglycans