Edge magnetoplasmon is an emergent chiral bosonic mode promising for studying electronic quantum optics. While the plasmon transport has been investigated with various techniques for decades, its coupling to a mesoscopic device remained unexplored. Here, we demonstrate the coupling between a single plasmon mode in a quantum Hall plasmon resonator and a double quantum dot (DQD). Resonant plasmon-assisted tunneling is observed in the DQD through absorbing or emitting plasmons stored in the resonator. By using the DQD as a spectrometer, the plasmon energy and the coupling strength are evaluated, which can be controlled by changing the electrostatic environment of the quantum Hall edge. The observed plasmon-electron coupling encourages us for studying strong coupling regimes of plasmonic cavity quantum electrodynamics.