Purpose: This article illustrates the replication of asthma and COPD conditions in a laboratory setting and the potential applications of this methodology.
Introduction: Biologic drugs have been shown to enhance the treatment of severe asthma and COPD. Monoclonal antibodies against specific targets have dramatically changed the management of these conditions. Although the inflammatory pathways of asthma and COPD have already been clearly outlined, alternative mechanisms of action remain mostly unexplored. They could provide additional insights into these diseases and their clinical management.
Aims: In vivo or in vitro models have thus been developed to test alternative hypotheses. This study describes sophisticated ex vivo models that mimic the response of human respiratory mucosa to disease triggers, aiming to narrow the gap between laboratory studies and clinical practice.
Results: These models successfully replicate crucial aspects of these diseases, such as inflammatory cell presence, cytokine production, and changes in tissue structure, offering a dynamic platform for investigating disease processes and evaluating potential treatments, such as monoclonal antibodies. The proposed models have the potential to enhance personalized medicine approaches and patient-specific treatments, helping to advance the understanding and management of respiratory diseases.
Keywords: Chronic obstructive pulmonary disease (COPD); air-liquid interface (ALI) cultures; asthma; drug efficacy evaluation; ex vivo respiratory mucosa model; inflammatory lung diseases; tissue remodeling.