Glyphosate is a globally dominant herbicide. Here, we studied the degradation and microbial response to glyphosate application in a wetland soil in central Delaware for controlling invasive species (Phragmites australis). We applied a two-step solid-phase extraction method using molecularly imprinted polymers designed for the separation and enrichment of glyphosate and aminomethylphosphonic acid (AMPA) from soils before their analysis by ultra-high-performance liquid chromatography (UHPLC) and Q Exactive Orbitrap mass spectrometry methods. Our results showed that approximately 90 % of glyphosate degraded over 100 d after application, with AMPA being a minor (<10 %) product. Analysis of glyphosate-specific microbial genes to identify microbial response and function revealed that the expression of the phnJ gene, which codes C-P lyase enzyme, was consistently dominant over the gox gene, which codes glyphosate oxidoreductase enzyme, after glyphosate application. Both gene and concentration data independently suggested that C-P bond cleavage-which forms sarcosine or glycine-was the dominant degradation pathway. This is significant because AMPA, a more toxic product, is reported to be the preferred pathway of glyphosate degradation in other soil and natural environments. The degradation through a safer pathway is encouraging for minimizing the detrimental impacts of glyphosate on the environment.
Keywords: Aminomethylphosphonic acid (AMPA); Degradation pathway; Gene abundance; Gene expression; Orbitrap MS; PhnJ gene; UHPLC.
Copyright © 2024 Elsevier B.V. All rights reserved.