In the last few years, the exploitation of deep-sea regions for minerals extraction raised international attention as an economically viable source for the mining industry. However, most of these minerals are found close to sensitive ecosystems that can be harmed by mining activities. Given the potential impact, there is a need for the establishment of best practices towards the adoption of preventive strategies for the sustainable management and exploitation of deep-sea environments. To accomplish this objective, numerical models have proven to be reliable tools to support decision-making. In the present study, a high-resolution eddy-resolving ocean numerical model was configured and integrated with a semi-Lagrangian model aiming to map the transport of rock-fragments associated with mining activities. The model was applied to an area rich in polymetallic sulphides at the Northern Mid-Atlantic Ridge (NMAR). Model results showed that local topography and circulation dynamics played an important role for the dispersion and settling of the rock-fragments. In the presence of local submesoscale processes, the residence time do not follow the neutral relation H/vs. It was demonstrated that, depending on the local hydrodynamics, rock-fragments released at sub-surface depth can impact wider areas, with a predicted impact on pelagic and benthic organisms.
Keywords: Deep-sea circulation; Hazard assessment; NMAR region; Ocean modelling; ROMS; Sediment transport.
© 2024 The Authors. Published by Elsevier Ltd.