Background: Infectious diseases are still one of the greatest threats to human health, and the etiology of 20% of cases of clinical fever is unknown; therefore, rapid identification of pathogens is highly important. Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming; serologic detection has window periods, false-positive and false-negative problems; and nucleic acid molecular detection methods can detect several known pathogens only once. Three-generation nanopore sequencing technology provides new options for identifying pathogens.
Case summary: Case 1: The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days, accompanied by cough and sputum. Nanopore sequencing of the drainage fluid revealed the presence of oral-like bacteria, leading to a clinical diagnosis of bronchopleural fistula. Cefoperazone sodium sulbactam treatment was effective. Case 2: The patient was admitted to the hospital with fever and headache, and CT revealed lung inflammation. Antibiotic treatment for Streptococcus pneumoniae, identified through nanopore sequencing of cerebrospinal fluid, was effective. Case 3: The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months. Despite antibacterial treatment, her symptoms worsened. The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii. The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.
Conclusion: Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.
Keywords: Case report; Infection; Nanopore sequencing technology; Pathogen; Third-generation sequencing technology.
©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.