Alterations of cerebrovascular reactivity following pediatric mild traumatic brain injury are independent of neurodevelopmental changes

J Cereb Blood Flow Metab. 2024 Aug 7:271678X241270531. doi: 10.1177/0271678X241270531. Online ahead of print.

Abstract

Cerebrovascular dysfunction following mild traumatic brain injury (mTBI) is understudied relative to other microstructural injuries, especially during neurodevelopment. The blood-oxygen level dependent response was used to investigate cerebrovascular reactivity (CVR) in response to hypercapnia following pediatric mTBI (pmTBI; ages 8-18 years), as well as pseudocontinuous arterial spin labeling to measure cerebral blood flow (CBF). Data were collected ∼1-week (N = 107) and 4 months (N = 73) post-injury. Sex- and age-matched healthy controls (HC) underwent identical examinations at comparable time points (N = 110 and N = 91). Subtle clinical and cognitive deficits existed at ∼1 week that resolved for some, but not all domains at 4 months post-injury. At both visits, pmTBI showed an increased maximal fit between end-tidal CO2 regressor and the cerebrovascular response across multiple regions (primarily fronto-temporal), as well as increased latency to maximal fit in independent regions (primarily posterior). Hypoperfusion was also noted within the bilateral cerebellum. A biphasic relationship existed between CVR amplitude and age (i.e., positive until 14.5 years, negative thereafter) in both gray and white matter, but these neurodevelopment effects did not moderate injury effects. CVR metrics were not associated with post-concussive symptoms or cognitive deficits. In conclusion, cerebrovascular dysfunction may persist for up to four months following pmTBI.

Keywords: Cerebrovascular reactivity; functional magnetic resonance imaging; hypercapnia; neurodevelopment; perfusion.