We report the use of a new multiplex Real-Time PCR platform to simultaneously identify 24 pathogens and 3 antimicrobial-resistance genes directly from respiratory samples of COVID-19 patients. Results were compared to culture-based diagnosis. Secondary infections were detected in 60% of COVID-19 patients by molecular analysis and 73% by microbiological assays, with no significant differences in accuracy, indicating Gram-negative bacteria as the predominant species. Among fungal superinfections, Aspergillus spp. were detected by both methods in more than 7% of COVID-19 patients. Oxacillin-resistant S. aureus and carbapenem-resistant K. pneumoniae were highlighted by both methods. Secondary microbial infections in SARS-CoV-2 patients are associated with poor outcomes and an increased risk of death. Since PCR-based tests significantly reduce the turnaround time to 4 hours and 30 minutes (compared to 48 hours for microbial culture), we strongly support the routine use of molecular techniques, in conjunction with microbiological analysis, to identify co/secondary infections.
Keywords: Real-Time PCR; SARS-CoV-2; antimicrobial-resistance; culture-based diagnosis; molecular-based syndromic test; secondary infection.
Copyright © 2024 Elsevier Inc. All rights reserved.