Proteasome is essential for cell survival, and proteasome inhibition induces proteasomal gene transcription via the activated endoplasmic-reticulum-associated transcription factor nuclear factor erythroid 2-like 1 (Nrf1/NFE2L1). Nrf1 activation requires proteolytic cleavage by DDI2 and N-glycan removal by NGLY1. We previously showed that Nrf1 ubiquitination by SKP1-CUL1-F-box (SCF)FBS2/FBXO6, an N-glycan-recognizing E3 ubiquitin ligase, impairs its activation, although the molecular mechanism remained elusive. Here, we show that SCFFBS2 cooperates with the RING-between-RING (RBR)-type E3 ligase ARIH1 to ubiquitinate Nrf1 through oxyester bonds in human cells. Endo-β-N-acetylglucosaminidase (ENGASE) generates asparagine-linked N-acetyl glucosamine (N-GlcNAc) residues from N-glycans, and N-GlcNAc residues on Nrf1 served as acceptor sites for SCFFBS2-ARIH1-mediated ubiquitination. We reconstituted the polyubiquitination of N-GlcNAc and serine/threonine residues on glycopeptides and found that the RBR-specific E2 enzyme UBE2L3 is required for the assembly of atypical ubiquitin chains on Nrf1. The atypical ubiquitin chains inhibited DDI2-mediated activation. The present results identify an unconventional ubiquitination pathway that inhibits Nrf1 activation.
Keywords: ARIH1; DDI2; ENGASE; FBS2; FBXO6; NFE2L1; NGLY1; Nrf1; SCF complex; ubiquitination.
Copyright © 2024 Elsevier Inc. All rights reserved.