Bidens pilosa L., an annual herbaceous plant with a wide distribution, possesses novel medicinal properties. In January 2021, a powdery mildew disease outbreak was documented on B. pilosa plants located in the roadside areas in Shenzhen, Guangdong Province, China, with 60 to 80% disease incidence. Initial symptoms manifested as small, irregular white powdery patches, primarily on the adaxial surfaces of leaves. Subsequently, the colonies expanded, forming coalescent colonies that spread across the leaves, petioles, and stems, eventually leading to the distortion and senescence of leaves. Hyphae are hyaline, flexuous to straight, septate, with thin walls and a width ranging from 2 to 8 μm. Hyphal appressoria are nipple-shaped. Conidophores are erect or slightly flexuous, ranging from 80 to 150 µm in length and 12 to 18 µm in width (n = 30). Typically, these conidophores bear chains of 2 to 5 immature conidia, displaying a sinuate outline. Foot-cells, located at the base of conidophores, are cylindrical and erect, approximately 33 to 100 µm in length and 6 to 10 µm in width (n = 30). Conidia are hyaline, ellipsoid-ovoid to barrel-shaped, and lack fibrosin bodies. Primary conidia are ellipsoid-ovoid in shape, characterized by a rounded apex and a subtruncate base, 25 to 40 µm × 15 to 22 µm in width. Secondary conidia are barrel-shaped with truncate or subtruncate ends, 27 to 35 µm × 15 to 20 µm in width. Germ tubes exhibit a longitubus pattern and are prominently produced at the perihilar or apical region of the conidia. No chasmothecia were observed in the collected samples. In order to conduct a molecular-level identification, mycelium and conidia were collected from B. pilosa leaves. Genomic DNA was subsequently extracted from these samples. The internal transcribed spacer (ITS), intergenic spacer (IGS) and beta-tubulin (tub2) sequences were performed using primer pairs ITS1/ITS4, IGS-12a/NS1R, and tub2, respectively (Carbone and Kohn 1999; Scholin et al. 1994; White et al.,1990). A 568-bp ITS, a 366-bp IGS, and a 354-bp tub2 sequences (GenBank accession nos. OR647592, OR978282 and OR978283) were obtained. The ITS sequence exhibited over 99.6% similarity to Golovinomyces ambrosiae (MT929773) and G. cichoracearum (MH590731). The IGS sequence displayed 100% similarity to G. ambrosiae (MK383490) and G. ambrosiae (OK349420). The tub2 sequence displayed 100% similarity to G. ambrosiae (MW981257) and G. ambrosiae (MW981256). Phylogenetic analysis of IGS, ITS and tub2 also grouped obtained sequences within the G. ambrosiae complex. Based on the analysis of morphological characteristics and sequence identity, the pathogen was identified as G. ambrosiae. In order to satisfy Koch's postulates, an infected leaf was carefully pressed onto leaves of six healthy young B. pilosa plants, each grown in a separate pot. Additionally, a control group consisted of six non-inoculated plants. All plants were placed in a greenhouse: 25°C, 14/10-h light/dark photoperiod, and relative humidity 50%. After 10 days, the inoculated leaves exhibited powdery mildew colonies similar to those observed in the original infected plants. At 16 days, the inoculated leaves exhibited discoloration and premature leaf drop. The pathogenicity test was conducted twice. Microscopic observation and sequencing confirmed that isolated fungus was identical to the original pathogen. G. ambrosiae has previously been documented on B. pilosa in Fuzhou, Fujian Province, China (Mukhtar et al., 2022). However, to the best of our knowledge, this study represents the first report of powdery mildew caused by G. ambrosiae on B. pilosa in Shenzhen, Guangdong Province, China.
Keywords:
Bidens pilosa