Background: Atopic dermatitis (AD) is a chronic inflammatory cutaneous disorder, that emerges from intricate interplays among genetic predisposition, immune dysregulation, environmental factors, and compromised skin barrier. Understanding the inflammatory pathway in AD is important due to its fundamental role in the pathogenesis of AD. This study aimed to explore the diverse spectrum of proteins linked to the inflammation of AD and the relationship between systemic biomarkers and clinical severity in AD.
Methods: We examined the blood samples from 48 patients with AD and 48 healthy controls (HCs) using the Proximity Extension Assay (Olink). Differentially expressed proteins (DEPs) were identified and Pearson correlation analysis was conducted to determine systemic proteomic biomarkers associated with severity of AD.
Results: A total of 29 DEPs were significantly up-regulated and 2 DEPs were significantly down-regulated in AD compared with the HC. The MCP-4, IL-18, MCP-3, TNFRSF9, and IL-17C were the top 5 highest DEPs associated with the severity of AD.
Conclusion: Our study sheds light on the intricate network of inflammatory proteins in AD and their potential implications for disease severity. Our results indicate that these systemic inflammatory proteins could be valuable for assessing AD severity and enhancing our understanding of the disease's complexity and its potential management strategies.
Keywords: Atopic Dermatitis; Biomarker; Inflammation; Proteomics; Severity.
© 2024 The Korean Academy of Medical Sciences.