ChIP-exo is a powerful tool for achieving enhanced sensitivity and single-base-pair resolution of transcription factor (TF) binding, which utilizes a combination of chromatin immunoprecipitation (ChIP) and lambda exonuclease digestion (exo) followed by high-throughput sequencing. ChIP-nexus (chromatin immunoprecipitation experiments with nucleotide resolution through exonuclease, unique barcode, and single ligation) is an updated and simplified version of the original ChIP-exo method, which has reported an efficient adapter ligation through the DNA circularization step. Building upon an established method, we present a protocol for generating NGS (next-generation sequencing) ready and high-quality ChIP-nexus library for glucocorticoid receptor (GR). This method is specifically optimized for bone marrow-derived macrophage (BMDM) cells. The protocol is initiated by the formation of DNA-protein cross-links in intact cells. This is followed by chromatin shearing, chromatin immunoprecipitation, ligation of sequencing adapters, digestion of adapter-ligated DNA using lambda exonuclease, and purification of single-stranded DNA for circularization and library amplification.
Keywords: Bone marrow–derived macrophages; ChIP-exo; ChIP-nexus; Exonuclease digestion; Glucocorticoid receptor.
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.