Biodistribution of cerium dioxide and titanium dioxide nanomaterials in rats after single and repeated inhalation exposures

Part Fibre Toxicol. 2024 Aug 14;21(1):33. doi: 10.1186/s12989-024-00588-4.

Abstract

Background: Physiologically based kinetic models facilitate the safety assessment of inhaled engineered nanomaterials (ENMs). To develop these models, high quality datasets on well-characterized ENMs are needed. However, there are at present, several data gaps in the systemic availability of poorly soluble particles after inhalation. The aim of the present study was therefore to acquire two comparable datasets to parametrize a physiologically-based kinetic model.

Method: Rats were exposed to cerium dioxide (CeO2, 28.4 ± 10.4 nm) and titanium dioxide (TiO2, 21.6 ± 1.5 nm) ENMs in a single nose-only exposure to 20 mg/m3 or a repeated exposure of 2 × 5 days to 5 mg/m3. Different dose levels were obtained by varying the exposure time for 30 min, 2 or 6 h per day. The content of cerium or titanium in three compartments of the lung (tissue, epithelial lining fluid and freely moving cells), mediastinal lymph nodes, liver, spleen, kidney, blood and excreta was measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at various time points post-exposure. As biodistribution is best studied at sub-toxic dose levels, lactate dehydrogenase (LDH), total protein, total cell numbers and differential cell counts were determined in bronchoalveolar lavage fluid (BALF).

Results: Although similar lung deposited doses were obtained for both materials, exposure to CeO2 induced persistent inflammation indicated by neutrophil granulocytes influx and exhibited an increased lung elimination half-time, while exposure to TiO2 did not. The lavaged lung tissue contained the highest metal concentration compared to the lavage fluid and cells in the lavage fluid for both materials. Increased cerium concentrations above control levels in secondary organs such as lymph nodes, liver, spleen, kidney, urine and faeces were detected, while for titanium this was found in lymph nodes and liver after repeated exposure and in blood and faeces after a single exposure.

Conclusion: We have provided insight in the distribution kinetics of these two ENMs based on experimental data and modelling. The study design allows extrapolation at different dose-levels and study durations. Despite equal dose levels of both ENMs, we observed different distribution patterns, that, in part may be explained by subtle differences in biological responses in the lung.

Keywords: Cerium dioxide NM-212; In vivo; Inhalation exposure; Lung clearance; Physiologically-based kinetic modelling; Poorly soluble nanoparticles; Tissue distribution; Titanium dioxide NM-105; Toxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Inhalation
  • Animals
  • Bronchoalveolar Lavage Fluid* / chemistry
  • Bronchoalveolar Lavage Fluid* / cytology
  • Cerium* / pharmacokinetics
  • Cerium* / toxicity
  • Inhalation Exposure*
  • Lung* / drug effects
  • Lung* / metabolism
  • Male
  • Metal Nanoparticles / toxicity
  • Models, Biological
  • Nanostructures / toxicity
  • Particle Size
  • Rats
  • Rats, Wistar
  • Tissue Distribution
  • Titanium* / pharmacokinetics
  • Titanium* / toxicity

Substances

  • Titanium
  • Cerium
  • titanium dioxide
  • ceric oxide