Background: Craniospinal irradiation (CSI) is a complex radiotherapy (RT) technique required for treating specific brain tumors and some hematologic malignancies. With large volumes of hematogenous bone marrow (BM) being irradiated, CSI could cause acute hematologic toxicity, leading to treatment interruptions or severe complications. We report on the dynamics and dose/volume predictors of hematologic toxicity during CSI.
Materials and methods: Pediatric patients (≤ 18years) undergoing CSI in a tertiary cancer center were included. Medical records were retrospectively reviewed for clinical data and blood parameters were collected at baseline and weekly, until four weeks after the end of RT. The BM substructures were contoured, and dose-volume parameters were extracted. We used Wilcoxon rank-sum test to compare quantitative data, Chi square test for qualitative data and receiver operating characteristics (ROC) curves for dose/volume thresholds.
Results: Fifty-one patients were included. Severe toxicities (grade 3-4) were recorded as follows: 2% anemia, 8% thrombocytopenia, 25% leukopenia, 24% neutropenia. Ninety-eight percent of patients had lymphopenia (grade 1-4) at some point. Twenty-nine percent required granulocyte-colony stimulating factor, 50% had an infection and 8% required a blood transfusion. Dmean > 3.6 Gy and V15 Gy > 10.6% for Pelvic Bones were associated with a higher risk of developing any ≥ G3 toxicities. Dmean > 30-35 Gy to the thoracic and lumbar spine was predictive for G3-4 anemia and thrombocytopenia, and Cervical Spine Dmean > 30 Gy was associated with ≥ G3 neutropenia.
Conclusion: CSI was well tolerated, without life-threatening complications in our cohort, but hematologic toxicity was frequent, with severity increasing with higher mean doses delivered to the hematogenous BM and larger volumes of BM receiving 30-35 Gy.
Keywords: craniospinal irradiation; medulloblastoma; pediatric oncology; radiotherapy; toxicity.
© 2024 Greater Poland Cancer Centre.