Oxidative stress, redox status and surfactant metabolism in mechanically ventilated patients receiving different approaches to oxygen therapy (MecROX): An observational study protocol for mechanistic evaluation

NIHR Open Res. 2024 Jul 8:4:23. doi: 10.3310/nihropenres.13567.2. eCollection 2024.

Abstract

Background: MecROX is a mechanistic sub-study of the UK-ROX trial which was designed to evaluate the clinical and cost-effectiveness of a conservative approach to oxygen therapy for invasively ventilated adults in intensive care. This is based on the scientific rationale that excess oxygen is harmful. Epithelial cell damage with alveolar surfactant deficiency is characteristic of hyperoxic acute lung injury. Additionally, hyperoxaemia (excess blood oxygen levels) may exacerbate whole-body oxidative stress leading to cell death, autophagy, mitochondrial dysfunction, bioenergetic failure and multi-organ failure resulting in poor clinical outcomes. However, there is a lack of in-vivo human models evaluating the mechanisms that underpin oxygen-induced organ damage in mechanically ventilated patients.

Aim: The aim of the MecROX mechanistic sub-study is to assess lung surfactant composition and global systemic redox status to provide a mechanistic and complementary scientific rationale to the UK-ROX trial findings. The objectives are to quantify in-vivo surfactant composition, synthesis, and metabolism with markers of oxidative stress and systemic redox disequilibrium (as evidenced by alterations in the 'reactive species interactome') to differentiate between groups of conservative and usual oxygen targets.

Methods and design: After randomisation into the UK-ROX trial, 100 adult participants (50 in the conservative and 50 in usual care group) will be recruited at two trial sites. Blood and endotracheal samples will be taken at 0, 48 and 72 hours following an infusion of 3 mg/kg methyl-D 9-choline chloride. This is a non-radioactive, stable isotope of choline (vitamin), which has been extensively used to study surfactant phospholipid kinetics in humans. This study will mechanistically evaluate the in-vivo surfactant synthesis and breakdown (by hydrolysis and oxidation), oxidative stress and redox disequilibrium from sequential plasma and bronchial samples using an array of analytical platforms. We will compare conservative and usual oxygenation groups according to the amount of oxygen administered. Trial registration: ISRCTNISRCTN61929838, 27/03/2023 https://doi.org/10.1186/ISRCTN61929838.

Keywords: Hyperoxia; Mechanical ventilation; Oxidative stress; Oxygen; Redox; Surfactant.

Grants and funding

This project is funded by the National Institute for Health and Care Research (NIHR) under its Efficacy and Mechanism Evaluation (EME) programme (NIHR151287) and supported by the University Hospital Southampton NIHR Biomedical Research Centre (BRC). The views expressed are those of the author(s) and not necessarily those of the NIHR, NHS or the Department of Health and Social Care.