Background: Targeted alpha therapy (TAT) of somatostatin receptor-2 (SSTR2) positive neuroendocrine tumors (NETs) involving Ac-225 ([225Ac]Ac-DOTA-TATE) has previously demonstrated improved therapeutic efficacy over conventional beta particle-emitting peptide receptor radionuclide therapy agents. DOTA-TATE requires harsh radiolabeling conditions for chelation of [225Ac]Ac3+, which can limit the achievable molar activities and thus therapeutic efficacy of such TAT treatments. Macropa-TATE was recently highlighted as a potential alternative to DOTA-TATE, owing to the mild radiolabeling conditions and high affinity toward [225Ac]Ac3+; however, elevated liver and kidney uptake were noted as a major limitation and a suitable imaging radionuclide is yet to be reported, which will be required for patient dosimetry studies and assessment of therapeutic benefit. Previously, [155Tb]Tb-crown-TATE has shown highly effective imaging of NETs in preclinical SPECT/CT studies, with high tumor uptake and low non-target accumulation; these favourable properties and the versatile coordination behavior of the crown chelator may therefore show promise for combination with Ac-225 for TAT.
Methods: Crown-TATE was labeled with Ac-225, and radiochemical yield was analyzed as the function of crown-TATE concentration. LogD7.4 was measured as the indication of hydrophilicity. Free [225Ac]Ac3+ release from [225Ac]Ac-crown-TATE in human serum was studied. Biodistribution studies of [225Ac]Ac-crown-TATE in mice bearing AR42J tumors was evaluated at 1, 4, 24, 48, and 120 h, and the absorbed dose to major organs calculated. Therapy-monitoring studies with AR42J tumor bearing mice were undertaken using 30 kBq and 55 kBq doses of [225Ac]Ac-crown-TATE and compared to controls treated with PBS or crown-TATE.
Results: [225Ac]Ac-crown-TATE was successfully prepared with high molar activity (640 kBq/nmol), and characterized as a moderately hydrophilic radioligand (LogD7.4 = -1.355 ± 0.135). No release of bound Ac-225 was observed over 9 days in human serum. Biodistribution studies of [225Ac]Ac-crown-TATE showed good initial tumor uptake (11.1 ± 1.7% IA/g at 4 h) which was sustained up to 120 h p.i. (6.92 ± 2.03% IA/g). Dosimetry calculations showed the highest absorbed dose was delivered to the tumors. Therapy monitoring studies demonstrated significant (log-rank test, P < 0.005) improved survival in both treatment groups compared to controls.
Conclusions: This preclinical study demonstrated the therapeutic efficacy of [225Ac]Ac-crown-TATE for treatment of NETs, and highlights the potential of using crown chelator for stable chelation of Ac-225 under mild conditions.
Keywords: Actinium-225; Crown chelator; Neuroendocrine tumors; Peptide-receptor radionuclide-therapy; Targeted alpha therapy; Therapy-monitoring.
Copyright © 2024 Elsevier Inc. All rights reserved.