ATP-binding cassette (ABC) transporters, including P-glycoproteins (PGP), have been implicated in drug resistance in different organisms including Haemonchus contortus. This study confirmed the resistance status of H. contortus isolates selected for ivermectin (IVM) and oxfendazole (OXF) resistances using the fecal egg count reduction test and evaluated the gene expression of seven ABC transporters using RT-qPCR for two biological scenarios: the effect of selection for anthelmintic resistance and the effect of drug exposure on gene expression. Gene expression results showed that selection for IVM resistance led to the significant upregulation of Hco-pgp-9a (1.5-fold), Hco-pgp-11 (3-fold) and Hco-haf-9 (1.5-fold) (p < 0.05). Similarly, selection for OXF resistance led to the significant upregulation of Hco-pgp-9a (3-fold), Hco-pgp-11 (4-fold) and Hco-haf-9 (2-fold) when comparing with the unselected ISE isolate (p < 0.05). Exposure of selected isolates to anthelmintics lead to no significant upregulation of the studied transporter genes. We also observed instances where there was strong intragroup variation regarding samples originating from parasites obtained from different individual hosts pointing that the interactions of the animal host with the tested anthelmintics may also play a role in the expression of the studied nematode genes.