In this research, we reported the synthesis of effective sulphonated sugarcane bagasse (SCB@SA) biosorbent based on agriculture waste materials via a simple diazotization strategy for the removal of methylene blue (MB) and Bismarck Brown R(BB) dyes from waste water samples. First, the sugarcane bagasse (SCB) waste was collected, grinded, and sieved to obtain the desired size. Secondly, the SCB powder is modified with sulfanilinic acid (SA) via the formation of its diazonium salt to introduce sulfonic groups on the SCB surface. Different advanced techniques were applied to characterize the prepared materials before and after the adsorption process viz. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS) and Thermogravimetric analysis (TGA). Different parameters affecting the adsorption process of both MB and BB were studied. Because of the higher correlation coefficient (R2 ≥ 0.999) and lower error functions, the equilibrium MB and BB adsorption isotherms for a single-dye system fit Langmuir with maximum adsorption capacity reaching to 127.48 and 166.75 mg/g for MB and BB, respectively. Moreover, the RL values obtained for both dyes lie between 0 and 1, indicating that MB and BB adsorption by SCB@SA is a favorable process. Besides, the error functions' values of the pseudo-2nd-order are significantly lower than those of the pseudo-1st-order, implying that the adsorption MB and BB onto SCB@SA biosorbent fitted the pseudo-2nd-order kinetic model in a chemosorption manner. In the thermodynamic studies, the adsorption process is spontaneous, exothermic, and has less randomness. In addition, the SCB@SA biosorbent could be reused in five cycles maintaining on suitable adsorption efficiency. Finally, the MB and BB dyes could be adsorbed on the SCB@SA biosorbent via three mechanisms including π-π stacking, columbic attraction, and hydrogen bonding.
Keywords: Adsorption; Agriculture waste; Bismarck Brown R; Diazonium; Methylene blue; Sugarcane bagasse.
© 2024. The Author(s).