Confidence-Aware Severity Assessment of Lung Disease from Chest X-Rays Using Deep Neural Network on a Multi-Reader Dataset

J Imaging Inform Med. 2024 Aug 20. doi: 10.1007/s10278-024-01151-5. Online ahead of print.

Abstract

In this study, we present a method based on Monte Carlo Dropout (MCD) as Bayesian neural network (BNN) approximation for confidence-aware severity classification of lung diseases in COVID-19 patients using chest X-rays (CXRs). Trained and tested on 1208 CXRs from Hospital 1 in the USA, the model categorizes severity into four levels (i.e., normal, mild, moderate, and severe) based on lung consolidation and opacity. Severity labels, determined by the median consensus of five radiologists, serve as the reference standard. The model's performance is internally validated against evaluations from an additional radiologist and two residents that were excluded from the median. The performance of the model is further evaluated on additional internal and external datasets comprising 2200 CXRs from the same hospital and 1300 CXRs from Hospital 2 in South Korea. The model achieves an average area under the curve (AUC) of 0.94 ± 0.01 across all classes in the primary dataset, surpassing human readers in each severity class and achieves a higher Kendall correlation coefficient (KCC) of 0.80 ± 0.03. The performance of the model is consistent across varied datasets, highlighting its generalization. A key aspect of the model is its predictive uncertainty (PU), which is inversely related to the level of agreement among radiologists, particularly in mild and moderate cases. The study concludes that the model outperforms human readers in severity assessment and maintains consistent accuracy across diverse datasets. Its ability to provide confidence measures in predictions is pivotal for potential clinical use, underscoring the BNN's role in enhancing diagnostic precision in lung disease analysis through CXR.

Keywords: Confidence-aware prediction; Deep learning; Lung disease; Severity; Uncertainty.