Enabling light-controlled ionic devices requires insight into photoionic responses in technologically relevant materials. Mixed-conducting perovskites containing nondilute Fe─serving as electrodes, catalysts, and sensors─can support large, electronically accommodated excursions in oxygen content, typically controlled by temperature, bias, and gas atmosphere. Instead, we investigated the ability of low-fluence, above-bandgap illumination to adjust oxygen stoichiometry and drive oxygen fluxes in nondilute Sr(Ti1-xFex)O3-x/2+δ (x = 0.07, 0.35) thin films with high baseline hole concentrations. Films' optical transmission at 2.8 eV was used as a probe of oxygen stoichiometry in the range ∼100-500 °C. We compared pO2-step-driven and UV (3.4 eV)-step-driven visible optical transmission relaxations in films, finding that the time constants and activation energies of the relaxations were consistent with each other and thus with oxygen-surface-exchange-limited kinetics. Blocking oxygen exchange at the solid-gas interface with a UV-transparent capping layer resulted in no UV-induced optical relaxations. These results demonstrate that above-bandgap illumination can increase oxygen content in nondilute compositions through oxygen flux into the solid from the gas. First-principles simulations of defect formation enthalpies indicate that oxygen vacancies are energetically less favorable under steady-state illumination owing to shifts in quasi-Fermi levels. A larger 2.8 eV-optical response to UV illumination in x = 0.07 vs x = 0.35 samples was further investigated through ultrafast transient spectroscopy, where it was found that the x = 0.07 sample exhibits a slower carrier recombination. Together, these results suggest potential design principles for materials supporting large stoichiometry changes under above-gap illumination: (1) long excited carrier lifetimes and (2) highly charged, rather than neutral, defects/associates.