Determinants of tree population temporal stability in a temperate mixed forest over a gradient of nitrogen addition

J Environ Manage. 2024 Sep:368:122198. doi: 10.1016/j.jenvman.2024.122198. Epub 2024 Aug 20.

Abstract

Nitrogen (N) deposition is a significant threat to the functioning of forests and negatively impacts the delivery of forest goods and services. Contemporary management approaches seek to adapt forests to such N-deposition stressors, but to date how plant populations in natural forests respond to N deposition and what factors determine the contrasting responses among populations are still unclear. Here, we investigated the impact of N-addition (control: 0 kg ha-1 yr-1; low: 25 kg ha-1 yr-1; medium: 50 kg ha-1 yr-1; high: 75 kg ha-1 ha yr-1) on tree population temporal stability and how initial tree size, mycorrhizal type, and leaf N content (LNC; as a surrogate for functional trait composition) mediate tree population responses to N-addition in a Korean pine and mixed broadleaved dominated temperate forest in northern China. We quantified tree species population temporal stability as the ratio of mean to standard deviation of the year-by-year stem increments recorded in individual trees from 2015 to 2022 experimental period. The results showed different temporal stabilities of tree species among four N-addition levels, with the highest population stability observed within the high N-addition plots. Furthermore, initial tree size had significantly (p < 0.001) positive effects on population temporal stability. The effect of LNC and initial tree size were also contingent on the level of N applied. Specifically, increase in tree population LNC reduced population temporal stability in all plots where N was added. Our results imply that retention of large-sized trees and species with resource-conservative strategies (e.g., low LNC) could enhance forest stability under N deposition.

Keywords: Forest growth; Functional traits; Nitrogen deposition; Nitrogen saturation; Temporal stability.

MeSH terms

  • China
  • Forests*
  • Nitrogen* / analysis
  • Plant Leaves
  • Trees*

Substances

  • Nitrogen