Green deep eutectic solvents (DESs) are widely used to extract bioactive components from plant biomass; however, hydrophilic DES and bioactive component isolation methods have not been developed. In this study, we synthesized hydrophilic DES (CL-CA-DES) using citric acid and choline chloride. We combined this with environmentally friendly anion- and cation-exchange resin column chromatographic isolation methods. This approach extracted and isolated four polyphenolic compounds (catechins, epicatechins, procyanidin B1, and procyanidin B2) from raspberry root and efficiently recovered the hydrophilic DES. CL-CA-DES extracted significantly higher contents of catechin and procyanidin B2 from raspberry root compared to other solvents. It also extracted substantially higher contents of epicatechin compared to butyl alcohol, 70% ethanol, and water, but there was no significant difference when compared with acetone and ethyl acetate. Additionally, CL-CA-DES extracted significantly higher contents of procyanidin B1 compared to butyl alcohol, water, and ethyl acetate, with no significant difference when compared with 70% ethanol and acetone. The isolation efficiency of the bioactive components in the raspberry root extract by anion- and cation-exchange resin column chromatography was higher than that of the organic solvent extraction and precipitation generation methods, and the method was effective in recovering CL-CA-DES with a recovery rate higher than 60%. In conclusion, this study developed a new method for the efficient recovery of hydrophilic CL-CA-DES, which can be used for isolating polyphenolic compounds from raspberry root.
Keywords: deep eutectic solvent; isolation and recovery; polyphenolic compound extraction; raspberry root.
© 2024 Institute of Food Technologists.