Metallic aluminium in municipal solid waste incineration fly ash as a blowing agent for porous alkali-activated granules

R Soc Open Sci. 2024 Aug 21;11(8):240598. doi: 10.1098/rsos.240598. eCollection 2024 Aug.

Abstract

Porous alkali-activated materials are synthetic aluminosilicates that should be often produced as granules for practical applications. In the present study, municipal solid waste incineration fly ash with ~1.2 wt% of metallic aluminium was used as a novel blowing agent for metakaolin (their ratio ranged from 0% to 100%) with an aqueous sodium silicate solution as the alkali-activator and granulation fluid in high-shear granulation. The compressive strength of all granules was sufficient (≥2 MPa). Water absorption indicated an increase in porosity as the fly ash content increased. However, X-ray microtomography imaging showed no clear correlation between the fly ash content and porosity. The granules exceeded the leaching limits for earth construction materials for antimony, vanadium, chloride and sulphate. Of those, antimony, chloride and sulphate could be controlled by decreasing the ash content, but the source of vanadium was identified as metakaolin. The increase in the fly ash content decreased the cation exchange capacity of the granules. In conclusion, the recommended fly ash content is equivalent to 0.3 wt% of Al0 and the developed granules could be best suited as light-weight artificial aggregates in concrete where the additional binder would provide stabilization to decrease the leaching.

Keywords: adsorbents; alkali-activated materials; artificial aggregates; fly ash; geopolymers; granulation.