We present an efficient, open-source formulation for coupled-cluster theory through perturbative triples with domain-based local pair natural orbitals [DLPNO-CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found in the ORCA package, the most expensive integral generation and contraction steps associated with the CCSD(T) method are linear-scaling. In this work, we show that the t1-transformed Hamiltonian allows for a less complex algorithm when evaluating the local CCSD(T) energy without compromising efficiency or accuracy. Our algorithm yields sub-kJ mol-1 deviations for relative energies when compared with canonical CCSD(T), with typical errors being on the order of 0.1 kcal mol-1, using our TightPNO parameters. We extensively tested and optimized our algorithm and parameters for non-covalent interactions, which have been the most difficult interaction to model for orbital (PNO)-based methods historically. To highlight the capabilities of our code, we tested it on large water clusters, as well as insulin (787 atoms).
© 2024 Author(s). Published under an exclusive license by AIP Publishing.