One of the great challenges of document analysis is determining document forgeries. The present work proposes a non-destructive approach to discriminate natural and artificially aged papers using infrared spectroscopy and soft independent modeling by class analogy (SIMCA) algorithms. This is of particular interest in cases of document falsifications made by artificial aging, for this study, SIMCA, and Data-Driven SIMCA (DD-SIMCA) classification models were built using naturally aged paper samples, taken from three time periods: 1st period from 1998 to 2003; 2nd period from 2004 to 2009; and 3rd period from 2010 to 2015. Artificially aged samples (exposed to high temperature or UV radiation) were used as test sets. Promising results in detecting document falsifications related to aging were obtained. Samples artificially aged at high temperature were correctly discriminated from the authentic samples (naturally aged) with 100% accuracy. In contrast, the samples under the photodegradation process showed a lower classification performance, with results above 90%.
Keywords: Artificial Aging; Classification; DD-SIMCA; Document Forgeries; Middle Infrared; SIMCA.
Copyright © 2024 Elsevier B.V. All rights reserved.